Three Stilbene Tetramers from the Roots of Caragana sinica

MA，Da－You（马大友）LUO，Hong－Feng（骆宏丰）HU，Chang－Qi＊（胡昌奇）
Department of Chemistry of Natural Drugs，School of Pharmacy，Fudan University，Shanghai 200032，China

Abstract

Three stilbene tetramers，carasinols $\mathrm{A}-\mathrm{C}(\mathbf{1} \mathbf{- 3})$ ，along with three known substances，leachianol C，cararosinol A and stenophyllol B，were isolated from the roots of Caragana sinica．Their structures were elucidated by spec－ troscopy．It was found that compounds isolated except for stenophyllol B stimulated the proliferation of cultured osteoblasts．

Introduction

Caragana sinica（Buc＇hoz）Rehd．（Fabaceae）is wildly distributed in China．Its root is used as a Chinese traditional herb medicine for the treatment of hyperten－ sion，leukorrhagia and bruises．${ }^{1}$ The effects of stimulat－ ing the proliferation of cultured osteoblasts in vitro of EtOAc extract of the roots of C．sinica and some oligos－
tilbenes were reported previously．${ }^{2}$ Three new resvera－ trol tetramers，carasinols $\mathrm{A}-\mathrm{C}(\mathbf{1}-\mathbf{3})$（Figure 1）were isolated from the roots of C．sinica together with three known resveratrol oligomers，leachianol $\mathrm{C},{ }^{3}$ cararosinol A^{4} and stenophyllol B．${ }^{5}$ The isolated compounds were tested for the activity of stimulating the growth of cul－ tured osteoblasts．

2

Figure 1 Structures of carasinols A－C（1－3）．

[^0]
Results and discussion

Carasinol A (1) was obtained as a brown amorphous powder. Its molecular formula as $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{O}_{13}$ was established by HR-FABMS. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibited signals of four sets of ortho-coupled aromatic protons assigned to four 4-hydroxyphenyl groups, one AB_{2} system revealing the presence of a 3,5-dihydroxyphenyl group, two sets of meta-coupled aromatic protons assigned to two 3,5-dihydroxy-1,2-disubstituted phenyl groups, one singlet of a pentasubstituted benzene ring, two aliphatic protons on one dihydrobenzofuran ring [δ $5.84,4.29(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, each 1 H$)$] and six other aliphatic methine protons. These disclosed that $\mathbf{1}$ is a resveratrol tetramer with one dihydrofuran unit and one aliphatic hydroxyl moiety at $\mathrm{C}(7 \mathrm{c})$ according to $\delta_{\mathrm{C}} 78.8$. The planar structure was determined by HMBC spectrum (Figure 2). Significant correlations between $\mathrm{H}(7 \mathrm{~d})$ / $\mathrm{C}(8 \mathrm{c}), \mathrm{H}(8 \mathrm{~d}) / \mathrm{C}(7 \mathrm{c}), \mathrm{H}(8 \mathrm{~d}) / \mathrm{C}(9 \mathrm{c}), \mathrm{H}(7 \mathrm{~d}) / \mathrm{C}(9 \mathrm{c})$ indicated the presence of a five-membered ring $\left(\mathrm{C}_{3}\right)$. Correlations between $\mathrm{H}(8 \mathrm{a}) / \mathrm{C}(9 \mathrm{~b}), \mathrm{H}(8 \mathrm{~b}) / \mathrm{C}(10 \mathrm{a}), \mathrm{H}(7 \mathrm{~b}) / \mathrm{C}(9 \mathrm{a})$, revealed the presence of a seven-membered ring $\left(B_{3}\right)$. $\mathrm{C}(8 \mathrm{~b})$ was connected with $\mathrm{C}(14 \mathrm{c})$ regarding the correlations between $\mathrm{H}(8 \mathrm{~b}) / \mathrm{C}(9 \mathrm{c}), \mathrm{H}(8 \mathrm{~b}) / \mathrm{C}(13 \mathrm{c})$. Distinct NOEs between $\mathrm{H}(7 \mathrm{~d}) / \mathrm{H}[10(14) \mathrm{d}], \quad \mathrm{H}(8 \mathrm{~d}) / \mathrm{H}[2(6) \mathrm{d}]$, $\mathrm{H}(8 \mathrm{c}) / \mathrm{H}[10(14) \mathrm{d}]$ showed that $\mathrm{H}(8 \mathrm{~d})$ was trans to $\mathrm{H}(7 \mathrm{~d})$, $\mathrm{H}(8 \mathrm{c})$; NOEs between $\mathrm{H}(7 \mathrm{a}) / \mathrm{H}(14 \mathrm{a}), \mathrm{H}(8 \mathrm{a}) / \mathrm{H}[2(6) \mathrm{a}]$ revealed $\mathrm{H}(7 \mathrm{a}), \mathrm{H}(8 \mathrm{a})$ were trans. NOEs between $\mathrm{H}(7 \mathrm{~b}) / \mathrm{H}(14 \mathrm{~b}), \mathrm{H}(8 \mathrm{~b}) / \mathrm{H}[2(6) \mathrm{b}]$ indicated $\mathrm{H}(7 \mathrm{~b}), \mathrm{H}(8 \mathrm{~b})$ were trans. The seven-membered ring is similar to the seven-membered ring in Hopeaphenol. ${ }^{6}$ So the relative stereochemistry of $\mathbf{1}$ was determined as shown in Figure 3.

Figure 2 Significant HMBC correlations of 1.
Carasinol B (2), a pale yellow amorphous powder, had the molecular formula as $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{O}_{13}$ given by HR-FABMS. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of four 4-hydroxyphenyl groups, two 3,5-dihydroxyphenyl groups and two 3,5-dihydroxy-1,2-disubstituted phenyl groups. In the aliphatic region, four protons on two dihydrobenzofuran rings $[\delta 5.08,4.05$ (d, $J=3.3 \mathrm{~Hz}$, each 1 H$) ; \delta 4.84,3.60(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, each $1 \mathrm{H})$] and four successive protons of a tetrasubstituted
tetra-hydrofuran were observed. The significant HMBC correlation (Figure 4) revealed the planar structure of 2 was the same as kobophenol A. ${ }^{7}$ A significant NOE between $\mathrm{H}(7 \mathrm{a}) / \mathrm{H}[10(14) \mathrm{a}], \mathrm{H}(8 \mathrm{a}) / \mathrm{H}[2(6) \mathrm{a}]$ indicated $\mathrm{H}(7 \mathrm{a})$ and $\mathrm{H}(8 \mathrm{a})$ were trans; NOEs between $\mathrm{H}(7 \mathrm{~b})$ / $\mathrm{H}(14 \mathrm{~b}), \mathrm{H}(8 \mathrm{~b}) / \mathrm{H}[2(6) \mathrm{b}]$ indicated the two methine protons on the ring B_{3} were trans. On ring C_{3}, distinct NOEs between $\mathrm{H}(7 \mathrm{c}) / \mathrm{H}(7 \mathrm{~d}), \mathrm{H}(7 \mathrm{c}) / \mathrm{H}(14 \mathrm{c}), \mathrm{H}(7 \mathrm{c}) / \mathrm{H}-$ [10(14)d], H(8c)/H[2(6)c], H(7d)/H[10(14)d], H(8d)/H[2(6)d] revealed $\mathrm{H}(7 \mathrm{c})$ and $\mathrm{H}(7 \mathrm{~d})$ were trans to $\mathrm{H}(8 \mathrm{c})$ and $\mathrm{H}(8 \mathrm{~d})$. NOEs between $\mathrm{H}(8 \mathrm{a}) / \mathrm{H}(8 \mathrm{~b})$ and $\mathrm{H}(8 \mathrm{~b}) / \mathrm{H}(8 \mathrm{c})$ gave evidence for the molecular stereochemistry determination as shown in Figure 5. So, the only difference between 2 and kobophenol A is the relative spacial tendency of $\mathrm{H}(7 \mathrm{c})$.

Figure 3 Significant NOEs of 1.

Figure 4 Significant HMBC correlations of 2.
The molecular formula of Carasinol C (3), a yellow amorphous powder, was assigned as $\mathrm{C}_{56} \mathrm{H}_{42} \mathrm{O}_{12}$ by HR-FABMS indicating a resveratrol tetramer. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of four 4-hydroxyphenyl groups, one 3,5-dihydroxyphenyl group, one 3,5-dihydroxy-1,2-disubstituted benzene ring and two pentasubstituted benzene rings. In the aliphatic region, two mutually coupled protons were assigned to one dihydrobenzofuran moiety $[\delta 5.87,4.81(\mathrm{~d}, J=11.7$ Hz , each 1 H$)$] and there were other six aliphatic protons. In the HMBC spectrum (Figure 6), correlations between

Figure 5 Significant NOEs of $\mathbf{2}$

Figure 6 Significant HMBC correlations of 3.
$\mathrm{H}(8 \mathrm{a}) / \mathrm{C}(9 \mathrm{~b}), \mathrm{H}(7 \mathrm{~b}) / \mathrm{C}(9 \mathrm{a})$ indicated the presence of a seven-membered ring $\left(B_{3}\right)$. Another seven-membered ring $\left(\mathrm{C}_{3}\right)$ could be inferred from the correlations between $\mathrm{H}(7 \mathrm{c}) / \mathrm{C}(9 \mathrm{~b}), \mathrm{H}(8 \mathrm{c}) / \mathrm{C}(14 \mathrm{~b}), \mathrm{H}(8 \mathrm{~b}) / \mathrm{C}(9 \mathrm{c})$. Correlations between $\mathrm{H}(8 \mathrm{c}) / \mathrm{C}(7 \mathrm{~d}), \mathrm{H}(7 \mathrm{~d}) / \mathrm{C}(9 \mathrm{c}), \mathrm{H}(8 \mathrm{~d}) / \mathrm{C}(9 \mathrm{c})$, $\mathrm{H}(8 \mathrm{~d}) / \mathrm{C}(14 \mathrm{c})$ showed the presence of a five-membered ring $\left(D_{3}\right)$. Distinct NOEs between $H(7 a) / H(14 a)$, $\mathrm{H}[2(6) \mathrm{a}] / \mathrm{H}(8 \mathrm{a})$ indicated that two methine protons $[\mathrm{H}(7 \mathrm{a}), \mathrm{H}(8 \mathrm{a})]$ on the dihydrobenzofuran ring were trans. NOEs between H[2(6)b]/H(8a), H(8b)/H[2(6)b], $\mathrm{H}(8 \mathrm{~d}) / \mathrm{H}(7 \mathrm{c}), \mathrm{H}(8 \mathrm{~d}) / \mathrm{H}[2(6) \mathrm{d}], \mathrm{H}(7 \mathrm{~d}) / \mathrm{H}[10(14) \mathrm{d}], \mathrm{H}(8 \mathrm{c}) /$ $\mathrm{H}(8 \mathrm{~b}), \mathrm{H}(8 \mathrm{c}) / \mathrm{H}[2(6) \mathrm{d}], \mathrm{H}(8 \mathrm{~b}) / \mathrm{H}[2(6) \mathrm{c}]$ revealed $\mathrm{H}(8 \mathrm{a})$, $\mathrm{H}(8 \mathrm{~b}), \mathrm{H}(8 \mathrm{c})$ and $\mathrm{H}(7 \mathrm{~d})$ were cis. In view of the above observations, the structure of $\mathbf{3}$ was deduced as shown in Figure 7.

Experimental

General procedure

All UV spectra were measured on a Shimadzu UV-240 spectrophotometer. The IR spectra were taken on a Perkin-Elmer 783 (KBr) spectrophotometer. The optical rotations were determined using a Jasco P-1020 polarimeter in $\mathrm{CH}_{3} \mathrm{OH}$. HR-FABMS data were obtained on a VG AutoSpec 3000 mass spectrometer. The NMR spectra were recorded on a Bruker $\mathrm{AM} \times 400$ instrument.

Figure 7 Significant NOEs of 3.

Plant material

The roots of C. sinica (Buc'hoz) Rehd. were collected in August, 1999 from Zhongxiang County, Hubei Province, China and identified by Professor Feng Zhi-Jian, Department of Biology, Shanghai, East China Normal University. A voucher specimen (No. 20917) has been deposited in the herbarium of Institute of Botany, Jiangsu Province and Chinese Academy of Sciences.

Extraction and isolation

The dried and powdered roots ($100 \mathrm{~kg} \mathrm{)} \mathrm{were} \mathrm{macer-}$ ated with 90% ethanol at room temperature. The concentrated residue (7.8 kg) was precipitated in water and filtrated. The filtrated solvent was concentrated and applied to macroporous resin washed with water and ethanol successively. The ethanol fraction (360 g) was partitioned between water and EtOAc, n-butanol. The n-butanol fraction (187 g) was subjected to silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ mixture of increasing polarity. Fr. 4 $(31.0 \mathrm{~g})$, after being subjected to a silica gel column eluted with petroleum-EtOAc $(1: 4)$ and another one with cyclohexane-acetone ($1: 1$), gave stenophyllol B $(52 \mathrm{mg})$. Fr. $6(8.5 \mathrm{~g})$, after column chromatography on silica gel with cyclohexane-acetone $(1: 1.2)$ and then YWG-C18 eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 3)$, yielded 1 (58 mg), $2(65 \mathrm{mg})$ and cararosinol A (63 mg). Fr. 7 $(20.2 \mathrm{~g})$ gave $3(46.5 \mathrm{mg})$ and leachianol C (27 mg) after passage over an Sephadex LH20 column eluted with acetone and silica gel, eluted with petroleum-EtOAc (1 $: 5)$ and CHCl_{3} - $\mathrm{EtOAc}(1: 4)$.

Carasinol A (1) Brown amorphous powder, m.p. $>240{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-133.4$ (c 1.509, MeOH); UV $(\mathrm{MeOH}) \lambda_{\max }: 283(\log \varepsilon 4.2) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data are shown in Table 1; IR (KBr) $v: 3380,1608$, 1512, 1440, 1340, 1222, 1181, 1128, 1005, $832 \mathrm{~cm}^{-1}$; HRFABMS calcd for $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{O}_{13} 923.2704[\mathrm{M}-\mathrm{H}]^{-}$, found 923.2706.

Carasinol B (2) Pale yellow amorphous powder, m.p. $>240{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+181.7(c 2.258, \mathrm{MeOH})$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}: 284(\log \varepsilon 4.2) \mathrm{nm} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are shown in Table 1; IR (KBr) v: 3380, 610, 1516,

1449, 1240, 1167, 1122, 1000, $830 \mathrm{~cm}^{-1}$; HRFABMS calcd for $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{O}_{13} 923.2704[\mathrm{M}-\mathrm{H}]^{-}$, found 923.2662 .

Carasinol C (3) Yellow amorphous powder, m.p. $>240{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{25}-91.3$ (c 1.013, MeOH); UV (MeOH) $\lambda_{\text {max }}: 284(\log \varepsilon 4.4) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data are shown in Table 1; IR (KBr) v: 3417, 1613, 1512, 1455, 1344, 1234, 1166, $834 \mathrm{~cm}^{-1}$; HRFABMS calcd. for $\mathrm{C}_{56} \mathrm{H}_{42} \mathrm{O}_{12} 905.2598[\mathrm{M}-\mathrm{H}]^{-}$, found 905.2627.

Stimulating the growth of osteoblasts

The method of MTT ${ }^{8}$ was used to observe the activity of stimulating the growth of osteoblasts. It was found that carasinol A-C (1-3), cararosinol A and leachianol C had the effects of stimulating the proliferation of cultured osteoblasts (the reproduction rate of osteoblasts was raised $22.8 \%, 10.0 \%, 26.5 \%, 17.5 \%$ and 19.8% respectively at $1.0 \mu \mathrm{~g} / \mathrm{mL}$ than that of the controlled group).

Table $1 \quad{ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectral data of compounds $\mathbf{1}-\mathbf{3}$ in acetone- $d_{6}{ }^{a}$

Site	1		2		3	
	δ_{H}	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$
1a		131.1		134.3		131.1
2(6)a	7.08 (d, $J=8.6 \mathrm{~Hz}$)	129.8	6.72 (d, $J=8.5 \mathrm{~Hz})$	127.8	7.24 (d, $J=8.6 \mathrm{~Hz})$	130.1
3(5)a	6.74 (d, $J=8.6 \mathrm{~Hz}$)	115.9	6.51 (d, $J=8.5 \mathrm{~Hz})$	116.0^{a}	6.78 (d, $J=8.6 \mathrm{~Hz})$	116.1
4a		158.4		158.1		158.6
7 a	5.84 (d, $J=10.6 \mathrm{~Hz})$	87.9	5.08 (d, $J=3.3 \mathrm{~Hz})$	94.8	5.87 (d, $J=11.7 \mathrm{~Hz})$	88.1
8 a	4.29 (d, $J=10.6 \mathrm{~Hz})$	49.5	4.05 (d, $J=3.3 \mathrm{~Hz})$	57.0	4.81 (d, $J=11.7 \mathrm{~Hz})$	50.9
9 a		143.0		148.3		143.4
10a		120.7	5.74 (d, $J=2.2 \mathrm{~Hz})$	106.7		118.9
11a		157.6^{a}		159.5		158.2
12a	6.37 (d, $J=2.1 \mathrm{~Hz})$	102.1	5.90 (t, $J=2.2 \mathrm{~Hz})$	102.3	$6.54(\mathrm{~d}, J=1.8 \mathrm{~Hz})$	102.5
13a		$157.7^{\text {b }}$		157.7		158.8
14a	6.34 (brs)	105.6	5.74 (d, $J=2.0 \mathrm{~Hz})$	106.7	6.42 (brs)	106.7
1b		135.8		133.5		135.6
2(6)b	7.07 (d, $J=8.6 \mathrm{~Hz})$	128.5	6.19 (d, $J=8.6 \mathrm{~Hz})$	128.4	7.39 (d, $J=8.6 \mathrm{~Hz})$	129.1
3(5)b	6.64 (d, $J=8.6 \mathrm{~Hz}$)	115.6	6.47 (d, $J=8.6 \mathrm{~Hz}$)	116.2^{b}	6.70 (d, $J=8.6 \mathrm{~Hz})$	115.7^{a}
4b		156.1		157.6		156.5
7 b	5.27 (brs)	42.8	4.84 (d, $J=4.2 \mathrm{~Hz})$	94.0	5.73 (d, $J=3.1 \mathrm{~Hz})$	40.0
8 b	6.50 (brs)	41.7	3.60 (d, $J=4.2 \mathrm{~Hz})$	51.7	5.97 (d, $J=3.1 \mathrm{~Hz})$	46.2
9 b		140.7		144.4		140.8
10b		119.2		120.9		114.9
11b		160.4		163.0		157.9
12b	6.13 (d, $J=2.2 \mathrm{~Hz})$	96.4	6.42 (d, $J=2.1 \mathrm{~Hz})$	96.4	6.08 (s)	96.4
13b		159.0		161.1		157.7
14b	7.02 (d, $J=2.2 \mathrm{~Hz}$)	110.9	6.03 (d, $J=2.1 \mathrm{~Hz})$	107.4		121.7
1 c		137.1		136.3		138.9
2(6)c	6.71 (d, $J=8.6 \mathrm{~Hz})$	129.3	6.79 (d, $J=8.6 \mathrm{~Hz})$	127.3	7.08 (d, $J=8.6 \mathrm{~Hz})$	131.0
3(5)c	6.60 (d, $J=8.6 \mathrm{~Hz}$)	115.5	6.79 (d, $J=8.6 \mathrm{~Hz})$	$116.2^{\text {c }}$	6.60 (d, $J=8.6 \mathrm{~Hz})$	115.1
4 c		157.3		157.3		155.7

					Continued	
	1		2		3	
	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$
7 c	4.49 (d, $J=10.1 \mathrm{~Hz})$	78.8	5.25 (brs)	86.9	4.33 (d, $J=10.9 \mathrm{~Hz})$	50.9
8 c	3.75 (d, $J=10.1 \mathrm{~Hz})$	60.8	3.35 (dd, $J=7.6,1.8 \mathrm{~Hz})$	56.8	4.02 (d, $J=10.9 \mathrm{~Hz})$	62.3
9 c		149.0		140.0		149.2
10c		122.4		123.7		120.7
11c		153.8		161.7		155.1
12c	6.00 (s)	103.7	6.12 (d, $J=2.2 \mathrm{~Hz})$	96.1	6.02 (s)	104.0
13c		157.8		159.9		153.9
14 c		121.9	6.73 (d, $J=2.2 \mathrm{~Hz})$	108.4		121.8
1 d		137.5		131.9		138.6
2(6)d	7.02 (d, $J=8.6 \mathrm{~Hz})$	129.5	7.16 (d, $J=8.6 \mathrm{~Hz}$)	130.1	6.84 (d, $J=8.6 \mathrm{~Hz})$	129.0
$3(5) \mathrm{d}$	6.81 (d, $J=8.6 \mathrm{~Hz})$	115.5	6.71 (d, $J=8.6 \mathrm{~Hz})$	$116.5^{\text {d }}$	6.69 (d, $J=8.6 \mathrm{~Hz})$	$115.6{ }^{\text {b }}$
4 d		156.3		158.2		156.2
7d	4.24 (s)	55.1	5.26 (d, $J=11.1 \mathrm{~Hz}$)	86.1	4.42 (s)	57.3
8 d	2.97 (s)	59.5	3.10 (dd, $J=11.1,7.6 \mathrm{~Hz})$	55.8	3.22 (s)	62.0
9 d		151.4		139.6		152.5
10(14)d	6.03 (d, $J=2.2 \mathrm{~Hz})$	105.8	5.49 (d, J=2.1 Hz)	109.3	5.95 (d, $J=2.2 \mathrm{~Hz})$	105.1
11(13)d		158.9		158.5		159.2
12d	6.00 (t, $J=2.2 \mathrm{~Hz})$	100.9	6.13 (t, $J=2.1 \mathrm{~Hz})$	103.3	6.06 (t, $J=2.2 \mathrm{~Hz})$	101.0

Acknowledgements

We warmly thank Professors Wang Hong-Fu and Jin Wei-Fang of our university for the tests of stimulating osteoblast growth.

References

1 Jiangsu New Medical College The Dictionary of Traditional Medicine, Shanghai Scientific \& Technical Press, Shanghai, 1975, p. 1402
2 Luo, H. F.; Zhang, L. P.; Hu, C. Q. Tetrahedron 2001, 57, 4849.

3 Ohyama, M.; Tamaka, T.; Inuma, M. Phytochemistry 1995, 38, 733.
4 Yang, G. X.; Hu, C. Q. Chin. Chem. Lett. 2003 (in press).
5 Ohyama, M.; Tanaka, T.; Iinuma, M.; Burandr, C. L. Chem. Pharm. Bull. 1998, 46, 663.
6 Bezhuashvili, M. G.; Mudzhiri, L. A.; Shashkov, A. S.; Chizhov, O. S.; Stomakhin, A. A. Bioorg. Khim. 1997, 23, 979.

7 Kawabata, J.; Ichikawa, S.; Kurihara, H.; Mizutani, J. Tetrahedron Lett. 1989, 30, 3785.
8 Zhu, W. J.; Jin, W. F.; Zhang, L. L.; Zhang, L. X.; Wang, H. F. Acta Acad. Med. Shanghai 1995, 22, 254.
(E0304157 SONG, J. P.)

[^0]: ＊E－mail：madayouyou＠sina．com；Tel．：（021）－54237411；Fax：（021）－64183411
 Received April 15，2003；revised August 31，2003；accepted October 1， 2003.
 Project supported by the National Natural Science Foundation of China（No．39270800）．

